Universit a Di Pisa Lifting Complete Orders to Achieve Co-additivity of Closure Operators Lifting Complete Orders to Achieve Co-additivity of Closure Operators
نویسندگان
چکیده
We deene the notion of meet-uniformity for closure operators on a complete lattice, which corresponds to co-additivity restricted to subsets mapped into the same element, and we study its properties. A class of closures given by principal lters and the downward closures are relevant examples of meet-uniform closures. Next, we introduce a lifting of a complete order by means of a meet-uniform closure. Our main results show that this lifting preserves the complete lattice structure, and allows the meet-uniform closure to become fully co-additive.
منابع مشابه
Weakening Additivity in Adjoining Closures
In this paper, we weaken the conditions for the existence of adjoint closure operators, going beyond the standard requirement of additivity/co-additivity. We consider the notion of join-uniform (lower) closure operators, introduced in computer science, in order to model perfect lossless compression in transformations acting on complete lattices. Starting from Janowitz’s characterization of resi...
متن کاملFrom torsion theories to closure operators and factorization systems
Torsion theories are here extended to categories equipped with an ideal of 'null morphisms', or equivalently a full subcategory of 'null objects'. Instances of this extension include closure operators viewed as generalised torsion theories in a 'category of pairs', and factorization systems viewed as torsion theories in a category of morphisms. The first point has essentially been treated in [15].
متن کاملCategories of lattice-valued closure (interior) operators and Alexandroff L-fuzzy topologies
Galois connection in category theory play an important role inestablish the relationships between different spatial structures. Inthis paper, we prove that there exist many interesting Galoisconnections between the category of Alexandroff $L$-fuzzytopological spaces, the category of reflexive $L$-fuzzyapproximation spaces and the category of Alexandroff $L$-fuzzyinterior (closure) spaces. This ...
متن کاملM-FUZZIFYING MATROIDS INDUCED BY M-FUZZIFYING CLOSURE OPERATORS
In this paper, the notion of closure operators of matroids is generalized to fuzzy setting which is called $M$-fuzzifying closure operators, and some properties of $M$-fuzzifying closure operators are discussed. The $M$-fuzzifying matroid induced by an $M$-fuzzifying closure operator can induce an $M$-fuzzifying closure operator. Finally, the characterizations of $M$-fuzzifying acyclic matroi...
متن کاملCHARACTERIZATION OF L-FUZZIFYING MATROIDS BY L-FUZZIFYING CLOSURE OPERATORS
An L-fuzzifying matroid is a pair (E, I), where I is a map from2E to L satisfying three axioms. In this paper, the notion of closure operatorsin matroid theory is generalized to an L-fuzzy setting and called L-fuzzifyingclosure operators. It is proved that there exists a one-to-one correspondencebetween L-fuzzifying matroids and their L-fuzzifying closure operators.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997